Sémantique des Langages de Programmation (SemLP)

Projet : A Machine for CBPV

Le projet est à rendre sur Moodle et à soutenir le jeudi 23 mai. La soutenance prendra la forme de 15 minutes de présentation avec démonstration du code et explication d’une preuve de simulation.

Positive types
\[\varphi, \psi ::= \iota \mid ! \sigma \]

General types
\[\sigma, \tau ::= \varphi \mid \varphi \to \sigma \]

(a) Types of \(\Lambda_{HP} \)

\[M, N ::= x \mid \bar{n} \mid M^! \mid \text{der}(M) \mid \text{succ}(M) \mid \lambda x^\sigma M \mid \langle M \rangle^N \mid \text{fix}_x^\sigma M \]
\[\mid \text{if}(M, N, [z] P) \]

(b) Terms of \(\Lambda_{HP} \)

A typing context is an expression \(P = (x_1 : \varphi_1, \ldots , x_k : \varphi_k) \) where all types are positive and the \(x_i \)'s are pairwise distinct variables.

(c) Typing system of \(\Lambda_{HP} \).

Values are particular \(\Lambda_{HP} \) terms (they are not a new syntactic category) defined in Figure 2a. It is easy to check that they are all typed with positive types.

Figure 2 defines a deterministic weak reduction relation \(\rightarrow_w \). This reduction is weak in the sense that we never reduce within a “box” \(M^! \) or under a \(\lambda \).

The distinguishing feature of this reduction system is the role played by values in the definition of \(\rightarrow_w \). Consider for instance the case of \(\text{if} \), the term on which the test is made must be reduced to a value (necessarily of shape \(0 \) or \(n + 1 \) if the expression is well typed) before the reduction is performed. This allows to “memoize” the value \(n \) for further usage : the value is passed to the relevant branch of the \(\text{if} \) through the variable \(z \).

We say that \(M \) is weak normal if there is no reduction \(M \rightarrow_w M' \). It is clear that any value is weak normal. When \(M \) is closed, \(M \) is weak normal iff it is a value or an abstraction.
\[V := x \mid n \mid M'. \]

(a) Values of \(\lambda_{HP} \)

\[
\begin{align*}
\text{der}(M') & \rightarrow_w M \\
(\lambda x^\varphi M)V & \rightarrow_w M[V/x] \\
\text{fix} x^\sigma M & \rightarrow_w M \left[\left(\text{fix} x^\sigma M \right)^1/x \right] \\
\text{succ}(n) & \rightarrow_w n + 1 \\
\text{if}(0, N, [z]P) & \rightarrow_w N \\
\text{if}(n + 1, N, [z]P) & \rightarrow_w P[n/z]
\end{align*}
\]

(b) Deterministic one-step reduction \(\rightarrow_w \)

\[E := \text{der}(E[]) \mid \langle E[] \rangle V \mid \langle M \rangle E[] \mid \text{succ}(E[]) \mid \text{if}(E[], N, [z]P) \]

\[E[M] \rightarrow_w E[N], \text{ whenever } M \rightarrow_w N \]

(c) Evaluation contexts and context closure of reduction \(\rightarrow_p \)

Figure 2 – Operational semantics of \(\lambda_{HP} \)

Exercice 1:

In this exercise, we consider \(\lambda_{HP} \) without fixpoints of terms.

1. Write an Abstract Machine without environment that simulates the evaluation of \(\lambda_{HP} \).

 Stack Language:

 \[K := M \mid \varphi \mid \text{fun} \mid \text{arg} \mid \text{der} \mid \text{if} \mid S \text{ and } \pi := [] \mid K \cdot \pi \]

 Reduction:

 \[(M, \pi) \rightarrow_k (M', \pi') \]

 \[
 \begin{align*}
 (\langle M \rangle N, \pi) & \rightarrow_k (N, \text{fun} \cdot M \cdot \pi) \\
 (V, \text{fun} \cdot M \cdot \pi) & \rightarrow_k (M, \text{arg} \cdot V \cdot \pi) \\
 (\lambda x^\varphi M, \text{arg} \cdot V \cdot \pi) & \rightarrow_k (M[V/x], \pi)
 \end{align*}
 \]

 Implement this Abstract Machine.

2. Prove that the reduction terminates.

3. Prove by recurrence on the length of the reduction and by case on the shape of \(M \) that if \(W \) is a value or an abstraction, then if \(M \rightarrow_w W \), then \((M, []) \rightarrow_k (W, []) \).

 You will remark that if \((M, []) \rightarrow_k (W, []) \), then for any \(\pi \), \((M, \pi) \rightarrow_k^* (W, \pi) \)

4. Define a typing systems for stacks such that the translation \(* \) is compatible with types, that is:

 - If \(\vdash M : \sigma \) and \(\vdash \pi : \psi \) then \(\vdash (M, \pi) : \psi \).
 - If \(\vdash (M, \pi) : \sigma \) and \((M, \pi) \rightarrow_k (M', \pi') \) then \(\vdash (M', \pi') : \sigma \).
 - If \(\vdash (M, \pi) : \sigma \) then \(\vdash (M, \pi)^* : \sigma \).

 For instance,
5. Give a translation \(\star \) from States of the Abstract Machine to \(\Lambda_{HP} \) such that:

- If \((M, \pi) \to_k (M', \pi') \), then \((M, \pi)^* = (M', \pi') \).
- Thus, if \((M, \pi) \to_k^* (V, []) \), then \((M, \pi)^* = V \).

For instance,

\[
\begin{align*}
(N, \text{fun} \cdot M \cdot \pi)^* &= ((M)N, \pi)^* \\
(M, \text{arg} \cdot V \cdot \pi)^* &= ((M)V, \pi)^* \text{ if } M \text{ not an abstraction} \\
(\lambda x. M, \text{arg} \cdot V \cdot \pi)^* &= (M[V/x], \pi)^* \\
\ldots
\end{align*}
\]

Prove that the translation is well defined and satisfies the wanted properties.

6. Give a compilation \(\mathcal{C} \) of CBV into \(\Lambda_{HP} \) which is compatible with the reductions.

\(\mathcal{C} : \Lambda_c \to \Lambda_{HP} \) is defined on types and terms such that:

- If \(\Gamma \vdash M : A \), then \(\mathcal{C}(\Gamma) \vdash \mathcal{C}(M) : \mathcal{C}(A) \)
- If \(\Gamma \vdash M : A \Rightarrow B \), then \(\mathcal{C}(\Gamma) \vdash \mathcal{C}(M) : \mathcal{C}(A) \Rightarrow \mathcal{C}(B) \)
- \(\mathcal{C}(\Gamma) \vdash (\mathcal{C}(\mathcal{C}(M)))\mathcal{C}(N) \)

Implement this compilation and prove the simulation theorem.

7. Give a compilation \(\mathcal{D} \) of CBN into \(\Lambda_{HP} \) which is compatible with the reductions.

\(\mathcal{D} : \Lambda_n \to \Lambda_{HP} \) is defined on types and terms such that:

- If \(\Gamma \vdash M : A \), then \(!\mathcal{D}(\Gamma) \vdash \mathcal{D}(M) : \mathcal{D}(A) \)
- If \(\Gamma \vdash M : A \Rightarrow B \), then \(!\mathcal{D}(\Gamma) \vdash \mathcal{D}(M) : !\mathcal{D}(A) \Rightarrow \mathcal{D}(B) \)
- \(\mathcal{D}(\Gamma) \vdash \mathcal{D}(M) \mathcal{D}(N) \)

Implement this compilation and prove the simulation theorem.

Exercice 2 :

In this exercise, we consider the all language \(\Lambda_{HP} \) with fixpoints of terms.

1. Extend the abstract machine defined in exercise 1 question 1 to fixpoints of terms.

2. Prove that if \(M \to_w M' \), then \((M, []) \to_k^* (M', []) \).

3. In order to prove that this Abstract Machine simulates the reduction of \(\Lambda_{HP} \), we introduce a new translation which can be seen as a small step description of the Abstract Machine evaluation.

We rely on the typing system introduced in exercise 1 question 4.

- If \(\varphi \vdash \pi : \psi \), then \(\vdash \pi^* : \varphi \to \psi \).
- If \(\sigma \vdash \pi : \psi \), then \(\vdash \pi^* : !\sigma \to \psi \).

The translation is partially defined as follows:

- \((\text{fun} \cdot M \cdot \pi)^* = \lambda v^\varphi. \langle \pi^* \rangle (\langle M \rangle v) \)
- \((\text{arg} \cdot V \cdot \pi)^* = \lambda f^\sigma. \langle \pi^* \rangle (\langle \text{der}(f) \rangle V) \)
- \((S \cdot \pi)^* = \lambda v^\varphi. \langle \pi^* \rangle (Sv) \)

Extend it to all stacks and check it is well typed.

4. In order to prove the simulation, we need to introduce equivalences on terms (where \(E[] \) is an evaluation context as defined in Figure 2c):

- If \(\vdash M : \varphi \), then \(E[M] \equiv_\varphi (\lambda v^\varphi. E[v]) M \).
– If $\vdash M : \sigma$, then $E[M] \equiv_{\sigma} \langle \lambda f^{\sigma}.E[\text{der}(f)] \rangle M^i$.

Prove that the two relations are indeed equivalence on terms of Λ_{HP}.

5. Assume that $(M, \pi) \rightarrow_k (M', \pi')$ and prove that :
 - If $\varphi \vdash \pi : \psi$, then $\langle \pi^* \rangle M^i \rightarrow^*_w \equiv_{\varphi} \langle \pi^* \rangle M'$.
 - If $\sigma \vdash \pi : \psi$, then $\langle \pi^* \rangle M^i \rightarrow^*_w \equiv_{\sigma} \langle \pi^* \rangle M'$.

Références

